Symplectic Effective Order Numerical Methods for Separable Hamiltonian Systems
نویسندگان
چکیده
منابع مشابه
Symplectic Numerical Integrators in Constrained Hamiltonian Systems
Recent work reported in the literature suggests that for the long-time integration of Hamiltonian dynamical systems one should use methods that preserve the symplectic (or canonical) structure of the ow. Here we investigate the symplecticness of numerical integrators for constrained dynamics, such as occur in molecular dynamics when bond lengths are made rigid in order to overcome stepsize limi...
متن کاملEnergy-conserving numerical methods for multi-symplectic Hamiltonian PDEs
In this paper, the discrete gradient methods are investigated for ODEs with first integral, and the recursive formula is presented for deriving the high-order numerical methods. We generalize the idea of discrete gradient methods to PDEs and construct the high-order energypreserving numerical methods for multi-symplectic Hamiltonian PDEs. By integrating nonlinear Schrödinger equation, some nume...
متن کاملHigh-Order Symplectic Schemes for Stochastic Hamiltonian Systems
The construction of symplectic numerical schemes for stochastic Hamiltonian systems is studied. An approach based on generating functions method is proposed to generate the stochastic symplectic integration of any desired order. In general the proposed symplectic schemes are fully implicit, and they become computationally expensive for mean square orders greater than two. However, for stochasti...
متن کاملSecond Order Conformal Symplectic Schemes for Damped Hamiltonian Systems
Numerical methods for solving weakly damped Hamiltonian systems are constructed using the popular Störmer-Verlet and implicit midpoint methods. Each method is shown to preserve dissipation of symplecticity and dissipation of angular momentum of an N -body system with pairwise distance dependent interactions. Necessary and sufficient conditions for second order accuracy are derived. Analysis for...
متن کاملHigh order symplectic integrators for perturbed Hamiltonian systems
Abstract. We present a class of symplectic integrators adapted for the integration of perturbed Hamiltonian systems of the form H = A + εB. We give a constructive proof that for all integer p, there exists an integrator with positive steps with a remainder of order O(τε + τ ε), where τ is the stepsize of the integrator. The analytical expressions of the leading terms of the remainders are given...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2019
ISSN: 2073-8994
DOI: 10.3390/sym11020142